Identification and characterization of the Mustang promoter: regulation by AP-1 during myogenic differentiation.
نویسندگان
چکیده
We previously identified Mustang (musculoskeletal temporally activated novel gene) with expression exclusively in the musculoskeletal system. Although its expression is almost undetectable in intact bone, it is robustly upregulated during bone regeneration. It is also abundantly expressed in adult skeletal muscle and tendon. As such, Mustang represents a marker for these cells and thus identifying its promoter would enable us to characterize its transcriptional regulation. To this end, we have isolated and characterized a 1512-bp mouse genomic clone representing the Mustang 5'-flanking region and identified a transcription start site, a TATA box, and multiple putative transcription factor binding sites (including AP-1 and AP-2). The activity of this promoter was detected in musculoskeletal cells and embryonic fibroblasts, even exceeding levels (145%) of the control SV40 promoter (in C2C12 cells). Further, the contribution of specific AP-1 and AP-2 sites was determined with serially deleted and mutated promoter constructs. Results indicate that one of the four AP-1 sites is required for substantial transcriptional activation, as its specific deletion or mutation decreases promoter activity by 32% and 40%, respectively. In contrast, deletion of both identified AP-2 sites results in only a 12% decrease in promoter activity. We further characterized the key AP-1 site by EMSA and determined that in both proliferating and differentiating C2C12 cells, only c-Fos, Fra-2 and JunD were required for transcriptional activation. Mustang's restricted tissue specificity and strong promoter makes this gene an ideal candidate for utilization in cell lineage studies that could unveil cellular/molecular mechanisms responsible for musculoskeletal development and regeneration.
منابع مشابه
Telomerase reverse transcriptase promoter regulation during myogenic differentiation of human RD rhabdomyosarcoma cells.
During terminal differentiation of human and murine cells, telomerase activity and parallel transcription of telomerase reverse transcriptase (hTERT) are inhibited. In this study, we used in vitro and in vivo analyses to determine the role of hTERT promoter elements and associated factors during differentiation-induced inhibition of telomerase expression in RD, a human rhabdomyosarcoma cell lin...
متن کاملIdentification and characterization of the CD226 gene promoter.
CD226 is one of the main activating receptors on natural killer cells, and it can induce cytotoxicity to target cells through interaction with its ligands CD155 or CD112. CD226 is also involved in T cell differentiation, activation, and cytotoxicity. The expression of CD226 on natural killer cells and T cells can be regulated by cytokines and chemical stimuli; however, the mechanism of the regu...
متن کاملCharacterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation
Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study,...
متن کاملAP-1 and ets transcription factors regulate the expression of the human SPRR1A keratinocyte terminal differentiation marker.
The 173-base pair proximal promoter of SPRR1A is necessary and sufficient for regulated expression in primary keratinocytes induced to differentiate either by increasing extracellular calcium or by 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. Whereas calcium-induced expression depends both on an AP-1 and an Ets binding site in this region, responsiveness to TPA resides mainly (but not ...
متن کاملPromoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA
Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bone
دوره 39 4 شماره
صفحات -
تاریخ انتشار 2006